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A Numerical Model for Deep
Penetration Welding Processes

S.G. Lambrakos, E.A. Metzbower, P.G. Moore, J.H. Dunn, and A. Monis

The general features of a numerical model, and of its extensions, for calculating the temperature and
fluid velocity field in a three-dimensional workpiece undergoing deep penetration laser beam welding are
described. In the current model, the deposition of power from the beam is represented by time-dependent
boundary conditions on the equations of energy and momentum transfer. These boundary conditions are
specified at each timestep on a surface whose configuration can change with time and upon which energy
is deposited according to a specified power distribution. This model also includes the effects of the buoy-
ancy force on the melt pool and of the surface tension gradient on the surface of the fluid. The coupled
equations of energy, momentum transfer, and continuity combined with the time-dependent boundary
conditions representing the keyhole and the moving boundaries of the workpiece are solved by using a
specific implementation of the SIMPLE aigorithm. The important features of the numerical methods
used in the model are discussed. Isotherms and convection patterns calculated using the current model
are presented, and their significance for predicting weldment properties is discussed. A significant result
of the simulations is that they demonstrate the overwhelming influence of the keyhole vapor/liquid inter-
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face on fluid convection and conduction in deep penetration welding.
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1. Introduction

THE nature of fluid convection in a weld pool can have a sig-
nificant effect on the properties of the associated weld. It is the
combined influence of fluid convection and heat transfer for a
given welding process that determines the temperature history
of the workpiece and thus the microstructure of its various seg-
ments. In the case of arc welding processes, there have been
significant contributions to the modeling of fluid convection
and heat transfer in the workpiece.[!-3] Calculations using these
models have contributed to a quantitative understanding of the
relative influences of the electromagnetic force, surface ten-
sion, and buoyancy force on fluid convection in the weld pool.

Deep penetration laser welding differs from other conven-
tional welding processes in that énergy deposition does not oc-
cur on the surface of the workpiece or over some contiguous
spatial distribution within the workpiece. Instead, for deep
penetration welding, energy deposition occurs on the surface
boundary of a keyhole that moves, on average, through the
workpiece at a constant speed, i.e., the welding speed. In gen-
eral, the region inside the keyhole is made of turbulent and os-
cillatory fluid structures that exist in a gas phase. Although the
boundary of the keyhole fluctuates in time, and may peri-
odically collapse,[4 for a given beam intensity and speed, it can
be characterized on average by a fixed surface configuration
extending into the melt pool. Because the three-dimensional
distribution of temperature in the neighborhood of the keyhole
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is correlated with the time-averaged steady-state shape of the
liquid/vapor interface defining the keyhole, an approximate
representation of the keyhole is obtained using a distributed
heat source extending into the workpiece. Notable among dis-
tributions used for representing the distribution of heat in the
workpiece is the modified Beer-Lambert’s law.[3-7] The func-
tion representing the distribution of heat in the workpiece can
be adopted as the source term in the heat conduction equation.
This approach has been used effectively for modeling heat con-
duction in the workpiece for steady-state conditions.[3-8]

It is observed experimentally that the presence of a moving
keyhole has a major influence on the fluid flow in the weld pool
in the neighborhood of the keyhole boundary. It is conjectured
that this influence is due to the mechanical action of the va-
por/liquid interface moving through the molten pool. The spa-
tial distribution of energy deposited on the surface of the
keyhole (i.e., the vapor/liquid interface defining the keyhole
boundary) is a complicated function of time, the instantaneous
configuration of the keyhole, the gas phase processes occurring
inside the keyhole, and the spatial and temporal characteristics
of the laser beam. On average with respect to time, however, a
Gaussian power distribution should be a reasonable approxi-
mation of the energy deposition on the surface of the keyhole
relative to the center of the beam.

A numerical model is described for deep penetration laser
welding that explicitly considers the influence of the keyhole
liquid/vapor interface on convection. The influence of the key-
hole is represented in the model by time-dependent boundary
conditions on the equations of energy and momentum transfer.
These boundary conditions are specified at each timestep on a
dynamically evolving liquid/vapor interface whose configura-
tion is a function of the energy deposited on it and the material
properties of the workpiece. In the model, the rate and spatial
distribution of energy deposition on the surface of the keyhole
boundary is specified according to a Gaussian power law distri-
bution. The motion of the workpiece with respect to the beam is
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represented by time-dependent boundary conditions on the en-
ergy transport equations. As the workpiece moves past the
beam, the forward face is always at the ambient temperature,
T, Thus, a thermal cycle can be calculated for any point (x, y,
and z) in the workpiece, i.e., T(x, y, 2, ¢), where 1; < <1y, and
t; and #;, define the beginning and end of the cycle. Discretiza-
tion of the equations defining this model system is via a specific
implementation of the SIMPLE (semi-implicit method for
pressure-linked equations) algorithm.[%] The SIMPLE algo-
rithm for the numerical solution of the coupled transport equa-
tions has been used successfully for modeling energy transfer
and fluid flow in welding processes. This method was chosen
because its formalism provides flexibility for introducing ex-
tensions consistent with a specific process to be simulated. The
general formalism of the SIMPLE algorithm is in terms of
physical quantities that are defined with respect to cubical vol-
ume elements. Because this mathematical framework is not a
priori structured for use with any particular method of solving
the discretization equations, one may use methods based on the
physical aspects of the problem to optimize the algorithm for a
specific computer architecture. This formulation has signifi-
cance in terms of convenience and flexibility for extending this
model for the calculation of welding structures associated with
inclusions or asymmetric unsteady structures. In the model, a
formulation of the SIMPLE algorithm was constructed accord-
ing to the specific aspects of simulating deep penetration weld-
ing processes. The formulation of the SIMPLE algorithm does
not give explicit consideration to any particular numerical pro-
cedure for calculating derivatives. This formulation is moti-
vated by the increased availability of computer memory, which
permits the use of more convenient forms of discretization
equations, i.e., forms that previously may have been consid-
ered inefficient.

Included in this article is a discussion of the significance of
the influence of the keyhole on thermal cycles associated with
deep penetration welding processes and of potential extensions
of the model for the analysis of different types of welding struc-
tures. A significant result of the simulations is that they demon-
strate the overwhelming influence of the stirring action due to
the keyhole vapor/liquid interface on fluid convection in the
weld pool. The nature of this influence is discussed relative to
other driving forces of convection in the weld pool. Also in-
cluded in this article is a case study for predicting an estimate of
thermal cycles for positions within a workpiece for welding of
iron or low-carbon steels.

2. Physical Model of Deep Penetration
Laser Welding Process

2.1 Coupled Transport Equations and Forcing Terms

The model system to be specified is that of unsteady energy
and momentum transport in a coordinate system that is fixed in
the reference frame of a moving laser beam energy source. A
schematic of the model system is shown in Fig. 1. The bounda-
ries of the model system are defined, at each timestep, by the
sides of a finite-sized rectangular workpiece and by the tem-
perature of vaporization isotherm, which defines the boundary
of the keyhole.
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Fig. 1 Schematic of model system showing relative coordi-
nates of system boundaries.

The system is assumed to be symmetric about the xz face at
y = 0 (see Fig. 1); thus, only one half of the system is modeled.
The equations governing the model system are

oT
pC,,(T)E +V - [pC,(DUT]

d(C(NT)
+p§, jVB——J(_;x_— =V - [(DV T(x,0) [1]
J

U oU;
p—L+V. (PUU) + pﬁleBS;i
j

ot
:V»[u<nvq1—§—§+3,- 2
and
V-U=0 (3]
where j = 1, 2, 3 denotes the Cartesian coordinates x, y, and z,

respectively. The remaining quantities are defined as follows.
The quantity U = U, U, U3) = (u,v,w) is the velocity field ata
given point, and x = (x) X x3) = (X,9,2) is the Cartesian coordi-
nate of that point. The quantity Vg is the speed of the beam,
moving in the direction of increasing x, and 3, is the Kronecker
delta function. The quantity P is the pressure at a given point,
and T is the temperature. The quantities B; are the body force
terms due to the buoyancy force and are given by:

B =—pBg(T-T,) (4]
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where T),is the melting temperature of the metal. The quantity
u(7) is the coefficient of viscosity as a function of temperature
and is approximated by the expression:

W) = 1 —ulT - Tyl + 1y ‘ (5]

where 1, is some very large number representing an infinite
viscosity in a solid and u(T — Ty is a unit step function such
that:

u(T-T))=0ifT< Tyl otherwise [6]

For the sample calculations shown in this article, physical
quantities approximating those of iron or steel are adopted for
the model system. Therefore, this model is not representative of
a specific system, but rather of a general prototype iron-steel
system. These quantities and others that are associated with nu-
merical discretization and model specification are given below
and in Appendix C. The heat capacity in J/kg - K is given by the
expression:[10]

1.117 x 10%(1010 - 2 + 12 622(1010 — 7)"!
+0.3485T+355.6 if T< 1000 K [7]

1.225 x 108(T~ 990)™% + 0.1381 T + 585.7 otherwise

(D=

This function has been adopted for Cy(T) because of its
qualitative behavior. In the present study, no quantitative sig-
nificance is given to the values of C (7T) for the range of tem-
perature in the neighborhood of 7= 1000 K (727 °C), where it
changes considerably with 7. The function given by Eq 7 pro-
vides a representation of exothermic energy release for the pur-
pose of examining the general influence of reactions that can
occur in the workpiece during welding. The conductivity in
W/m - K as a function of temperature in degrees Kelvin is given
by the following expression:

70.4138 - 0.038125T if T <1073.15

41.0 if 1073.15 < T < 1763.15
k(T) =<-862.5375 + 0.5125T if1763.15<T<1803.15 [8]
61.5 if 1803.15 < T < 2800.15

865.34829 — 0.28707T if2800.15 < T<3014.15

In Eq 1 and 2, the influence of convection is represented by
two terms, i.e., aterm containing U and one containing V. This
representation follows because the flow field associated with
the convection terms in both the energy and momentum trans-
port equations, i.e., Eq 1 and 2, is defined with respect to an ori-
gin that is fixed in the workpiece. The component of the flow
field parallel to the direction of the motion of the beam is there-
fore p(u + Vy), however, the dependent variables of the mo-
mentum iransfer equations (#,v,w) are the velocities relative to
an origin that is stationary with respect to the beam. The
weighting coefficients for the discretization of Eq 2, as defined
by the SIMPLE algorithm,[®] are modified to take this repre-
sentation into account.
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2.2 Effects Entering the Model Through the Boundary
Conditions

The effect of surface tension enters the model via the bound-
ary conditions on the momentum transport equations. This is
described in the next section. The deposition of power from the
beam enters the model via time-dependent boundary condi-
tions on the energy transfer equation (Eq 1). At each timestep,
an isothermal region of the workpiece at the temperature of va-
porization is specified according to the relation:

Ty = min[T4,0,(2)Qy(x,y,1)] [9]
where
01(2) = Qg exp (—By2) [10]
030 = exp[—[%J [ - V0?2 +y2]] (11
b

and T; is the temperature of vaporization. The quantity of O, is
a distribution that specifies the deposition of power on the sur-
face of the keyhole relative to the beam center. The function O,
specifies the layer depth for energy deposition on the surface.
All node points with T = T; are defined as the union of interior
and boundary points of the keyhole.

At the keyhole liquid/vapor interface, the boundary condi-
tions on the momentum transfer equations are those of a no-slip
boundary. That is, the component of the velocity, in the refer-
ence frame of the workpiece, normal to the interface is zero:

U-n+Vg-n=0 [12]

where  is the unit normal to the keyhole liquid/vapor interface
and Vpgis the velocity of the beam with respect to the workpiece
and is in the x-direction. Another boundary on the molten re-
gion is defined by the solid/liquid interface. The boundary con-
dition on this boundary is specified in the model according to
the equation:

Uj==8,Vp if T<T) [13]

Note that according to this specification the set of all nodes
having temperature values less than T includes both boundary
and exterior points of the melt pool.

3. Boundary Conditions on the Faces of
the Sample

In this section, the boundary conditions on each face of the
sample (see Fig. 1) are specified with respect to temperature
and velocity. Boundary conditions on the xy face atz = 0 are
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oT _

== [14a]

du  dyoT d dv 9y dT .

Mz ™ Torax MMy T Tar oy

u=-Vp and v =0 otherwise [14c]
and
w=0 [14d]

The quantity 0y/dT is the thermal coefficient of surface ten-
sion. Boundary conditions on the xy face atz = L, are

oT
oL 15
2z [13a]
Ju dy oT v dy oT |
—=-—"and p4—m=— —— ifT,,<TET 15b
Moz ™ Torax MM T Tor gy M g [150]
u=-Vp and v =0 otherwise [15¢]
and
w=0 [15d]
Boundary conditions on the xz face at y = 0 are
oT
-0 16
o [16a]
ég:O v=0 and QK:O [16b]
dy dy

Boundary conditions on the xz face at y = L, and at time 7 +
Arare

ar_ [17
y 2l
if L, coincides with the physical edge of the workpiece, or

kAt
pC,

o

E [17b]

T(I+At):T(t)+[

if L, does not coincide with the physical edge of the workpiece.

u=-Vp v=0 and w=0 [17¢]
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Boundary conditions on the yz face atx = 0 and at time 1 + At
are

[18a]

kAt _dﬁ
pC,

Tt+An=T(+ [— )

where x = 0 does not coincide with the physical edge of the
workpiece.

u=-Vz v=0 and w=0 [18b]

Boundary conditions on the yz face atx = L  are

=T, [19a]
u=-¥Vz v=0 and w=0 [19Db]

It is important to note that the boundary conditions on the
system boundaries at face xz aty = L, face yz atx = 0, and face
yz at x = L, are physically consistent only if solidification has
occurred in the neighborhood of these boundaries; that is, only
if the temperature at grid points in the neighborhood of these
boundaries is less than T',so that u = —Vg. Additionally, the rate
of energy transfer and the positioning of the beam in the model
system should not be such that the boundary conditions given
by Eq 19a and 19b are invalid. That is, the system parameters
should always be such that the values of the temperature in the
neighborhood of the yz face atx = L are T ,.

4. Computational Issues

4.1 Formulation of the SIMPLE Algorithm for
Modeling Welding Processes

A derivation of the discretization equations that detine the
SIMPLE algorithm are given elsewhere.[°l The current model
uses a formulation of this algorithm that is structured for the
type of modeling considered here. Thus, the formulation is
structured to provide an accurate coupling between energy
transfer and the stirring action of the keyhole boundary. Fur-
thermore, this formulation provides an explicit representation
of this coupling and of the dependence of energy transfer on
keyhole stirring. This formulation is defined by:

6
pAP @
0, =4 a0, + %Em +8, [20]
=1
where
. 1
AP
=\ T+ B 21]
k=1
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Fig. 2 Indexing scheme for node neighbors and associated dy-
namical quantities.

The weighting coefficients g, are given by

a, =T, Al4(|P, (k)i )+ max [(—1)YpAZ
Vi + B+ 8,0V, 0] [2:
where
P (k) =p[V,+ (8, + 3, )VglAIT ! [23]
and
A(P (b)) = max[0,(1.0 — 0.1|P,(k)))’] [24]

The integer variable k specifies with which of the six nearest
neighbor nodes of node p a given quantity is to be associated.
This is described schematically in Fig. 2. In Eq 20 to 24, if the
field quantity ¢ is the temperature 7, then I' = &(7) and S, = 0.
If the field quantity ¢ is u, v, or w, then T'=p(7) and
S, = (0P/0x)AP + B,. The quantity @{ is the value of ¢, at the
previous timestep. The weighting coefficients g, follow by de-
riving the discretization equations of SIMPLE from the model
system defined by Eq 1 and 2 with the condition of fixed or uni-
form separation between grid points. The significance of this
condition in the current formulation is discussed below. The
quantity ¥ is given by:

Vk = Slkul + 82/{“2 + 83kV3 + 64’("4 + BSkWS + 56kw6 [25]
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XSHIFT » 0
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F

Y

ISTEP = ISTEP + 1 _

TIME = 4t . ISTEP - TSHIFT

Dx = Va. a1. ISTEP - XSHIFT

Dx g al

| NSHIFT = NSHIFT + |

TSHIFT = TSHIFT + At . NSHIFT

SHIFT GRID-POINT VALUES
FKLJX) = F(+1J.X)

—

<

SOLVE SYSTEM

ISTEP = NSTEP

Fig.3 Procedure for shifting grid relative to beam center for
the case Al > VgAt.

and is the component of the velocity orthogonal to the faces of
a rectangular volume centered at node p (see Fig. 2).

The significant features of the above formulation of the
SIMPLE algorithm for modeling the coupling of energy trans-
fer in the weld pool to keyhole stirring are embodied in the
weighting coefficients defined by Eq 22 and 23. The weighting
factor 4, whose value is between 0 and 1, is a function of the Pe-
clet number P_(k) and varies according to the influence of con-
vective energy transfer relative to energy transfer by
conduction. The coefficients a; are constructed so that there is
an accurate weighting of the influence due to stirring. The stir-
ring action of the keyhole, unlike other mechanisms for driving
fluid flow, is the result of coupling between the motion of the
molten pool and the geometric constraint imposed by the key-
hole boundary.

The rate of energy input into the system is a function of the
beam profile parameters defined in Eq 10 and 11 and the beam
speed Vp. The energy input is effected via the time-dependent
boundary conditions associated with the keyhole vapor/liquid
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Fig. 4 Procedure for shifting grid relative to beam center for
the case Al < FgAt.

interface. The time-dependence of the keyhole boundary con-
ditions results from the shifting of the grid relative to the beam
center. The procedure for shifting the grid depends on the size
of the distance between nodes Al relative to the quantity VpAt,
where Atis’the timestep of integration. These procedures are il-
lustrated in Fig. 3 and 4.

4.2 Convergence Criteria for Iterative Schemes

The system of discretization equations is solved iteratively
until the convergence criterion

max|ef,| <e (26]

max

is satisfied. The quantity €_,, is the maximum error tolerance

and

max

el = "P?}k‘ (pg.;‘] 271
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In Eq 26 and 27, the subscript denotes the grid point and the su-
perscripts the iteration. Successive iterations consist of under-
relaxation according to

AB@®

or=rl+alg Zak(p +—(p11+S - ¢! (28]

where the superscript #»* denotes the most current iterate,
which can be either n or n — 1, and the relaxation coefficient o
is less than 1. In the case of fluid velocity, the authors have de-
fined a relative error scaled by the beam velocity, i.e.,

-1

“P;}k_(p?ﬁlH(PZ‘k ifo=u

el = [29]

‘(pg.k— o7 1 ( l (p;}k’ + Vg™ otherwise

Once convergence is achieved for a particular region of the
workpiece, i.e., Eq 26 is satisfied for a sufficiently large and
connected set of nodes and for a sufficiently long time interval,
the values of the dependent variables at the node points within
this region, ¢;;, need no longer be changed, and the iteration on
these variables stops. Thus, the work per iteration decreases as
the iteration progresses. This follows because the weighting co-
efficients q; are computed from the converged values of the
previous set of iterations.

4.3 FEvaluation of No-Slip Boundary Conditions

The solution of the no-slip boundary condition is of the
form:

ljl( - P(n)(Ulmn + VB) [30]

where n is the unit normal to the keyhole liquid/vapor surface at
the node ik, which is a boundary point. The quantity U,,,,
is the veloc1ty at a node /mn exterlor and nearest to the bound-
ary and along n (see Fig. 5),and P(n) is the projection operator
that forms a vector orthogonal to n. The nodes {Imn} are the set
of all exterior points that are most adjacent to the boundary. For

Ujjx to be computed, the node /jk must be identified as a bound-
ary point, the node /mn must be identified, and n must be com-
puted.

To identify a given node as a boundary point, the tem-
perature at each node and its six adjacent nodes is examined.
The node ik is identified via a search algorithm that takes ad-
vantage of the shape of the keyhole. Because the radius of the
keyhole cannot exceed the radius of the laser beam (R, in Eq
11), the number of comparisons required to identify all bound-
ary points is bounded above by 7nf,.n, Where ny., . corre-
sponds to the number of nodes that the beam surface has
enclosed in the z-direction (see Fig. 5).

Once the nodes ik and /mn are determined, the normal is
given by
(31]

D= Ximn ~ Xijk
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Fig.5 Schematic of model system showing nodes used for cal-
culating no-slip boundary conditions.
L AL
and the projection operator P(n) is given by

nn’
TnT

Pn) =1~ [32]

This form of the operator eliminates the need to compute the
Euclidian norm of n and therefore eliminates a computationally
costly square root calculation.

4.4 Calculation of Pressure Field

An expression for iteratively calculating a correction to the
pressure is presented such that the resulting field is consistent
with both the momentum transport and continuity equations.
This expression represents a further modification of the SIM-
PLE algorithm and is based on a second-order central differ-
ence of the pressure field. In addition, this expression is not
defined in terms of shifted-grid quantities.

Ateach iteration, it is desired to calculate a discrete pressure
field P, such that U, ;, where p designates the node point, satis-
fies Eq 1, as well as the expression:

Y —%=0 [33]

It can be shown that, if U} satisfies Eq 20 for the pressure field
5 then for a pressure ﬁefd P,=P,+ P/, where P, is the pres-
sure correction, the corrected veloc1ty fP eldis glven by

U= +g{ P,]AP [34]

% )

The expression for the pressure correction that is derived in Ap-
pendix A is given by
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1/62 P+ [35)

where
’ Ut
B={'y —£ ' [36]
ox;

i=1

and the method for numerically calculating the derivatives,
oUj /dx,, is arbitrary and not a formal part of the derivation of
5 (see Appendix A).

4.5 Discussion of Computational Issues

The present study concerns two issues. One is the charac-
terization of the general influence on energy transfer due to the
physical conditions in the neighborhood of the keyhole va-
por/liquid interface. The other is the development of a proto-
type model system of deep penetration welding that is easily
extendable to more detailed and quantitative analysis and that
eventually can be realized as a practical tool for process model-
ing of different types of deep penetration welding processes.
The authors have therefore adopted a discrete formulation of
the model system, based on SIMPLE, that emphasizes its con-
venience and adaptability. In this section, the important fea-
tures of that formulation are described that should be relevant
in practice to achieving a reasonable combination of accuracy,
efficiency, and model flexibility. A rigorous evaluation of the
formulation in terms of overall optimality has not been consid-
ered and remains an open issue for further investigation. How-
ever, experience gained using this model and a preliminary
examination of its underlying mathematical properties suggest
that the formulation is both a convenient and reasonably tracta-
ble approach for process modeling involving complex or un-
steady keyhole structures.

The important features of the formulation are reviewed and
contrasted to the original formulation of SIMPLE. A discretiza-
tion scheme has been adopted that is based on a uniform or
fixed grid separation, i.e., Al in Eq 20 through 23. The discreti-
zation scheme of Patankar and co-workers!®! is based on a grid
whose separation of nodes is locally variable and is therefore in
general nonuniform. This aspect of the original formulation is
important for local grid refinement where higher levels of reso-
lution are required. Another feature that was adopted in the
formulation is that of a single grid system. The original formu-
lation used a combination of grids, i.e., a main grid and a shifted
grid. This feature of the original formulation contributes to both
its efficiency and accuracy because it permits the calculation of
gradients of the different quantities, i.e., 7, Uj, and P, to be at
the same level of accuracy and computational cost. The reasons
for not adopting this feature are discussed below. Because this
formulation is based on a single grid, it is necessary to adopt a
consistent pressure correction equation. Therefore, the authors
derived a pressure correction equation that was based on a sin-
gle grid system. This derivation does not include as part of its
formal development any specific finite difference approxima-
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Fig.6 Unsteady evolution of model system to steady state for weld pool. Model system includes surface tension and buoyancy. The tem-
peratures of the isotherms are (a) 35 °C, (b) 335 °C, (¢) 635 °C, (d) 935 °C, (e) 1235 °C, and (f) 1535 °C. In cases where isotherms are not la-
beled, temperatures of isotherms are assigned as follows. The outermost isotherm is at 35 °C. Isotherms that are successively closer to the

keyhole are at temperatures in the sequence 335, 635, 935, 1235, 1535, 1835, 2135, and 2435 °C and Tg.

tion of the velocity gradients (see Eq 36). However, it does in-
clude a physically reasonable condition on the character of the
local variation of the pressure field at the boundaries, i.e., Eq
A6in Appendix A. Itis important to note that the use of asingle,
uniformly spaced grid requires in general a higher computa-
tional cost for calculating the quantities aP/axj and oU} »/0%;
relative to the computational cost of achieving comparable ac-
curacy with a shifted grid system. The reason for adopting a
formulation of SIMPLE that is based on a single, uniformly
spaced grid is that the mathematical properties of this algorithm
permit it to be combined with the method of embedded
meshes(!!] for adaptive local grid refinement. In general, be-
cause SIMPLE is an implicit formulation, grid spacing is inde-
pendent of the timestep size and can be varied locally to
achieve a desired resolution. Thus, the method of embedded
meshes combined with SIMPLE is mathematically equivalent
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(continued)

to the original formulation of SIMPLE, which is based on a lo-
cally variable global grid. However, the embedded mesh
method is found to be highly flexible for locally adapting grid
resolution according to the details of flow structures that can
occur in deep penetration welding problems. Reference 11 dis-
cusses the general features of the embedded mesh method.

5. Case Study of Factors Influencing the
Shape of the Weld Pool

For the prototype iron-steel system considered here, a case
study of the sensitivity of the shape of the molten pool with re-
spect to several general physical aspects of deep penetration
welding processes is presented. The sensitivity of the shape of
the melt pool with respect to keyhole stirring, surface-tension
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driven flow, and the rate of energy transfer in the solid were
considered. An analysis of the relative influence of surface ten-
sion is important in that surface tension has been shown to be a
significant driving force for fluid flow in welding processes
where energy deposition occurs on the surface of the work-
piece. An analysis of the relative influence of energy transfer in
the solid is important because it provides a basis for increasing
both the accuracy and efficiency of process simulations. This is
explained below.

Figures 6(a) through (g) show the unsteady evolution of the
model system to a steady state of the three-dimensional weld
pool. The isotherm labeled “f” in these figures designates ap-
proximately the solid/liquid boundary. This simulation uses a
model system that includes buoyancy and surface tension. In
addition, for this simulation the authors have imposed the con-
dition of zero conductivity at the boundaries for the purpose of
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(continued)

maintaining unsteady energy transfer in the solid. That is, the
boundary conditions are such that the system continuously
heats up at the boundaries and cannot achieve a global steady
state for conduction in the solid. Figure 7 shows a state of the
model system that is calculated via a simulation that is the same
as that described by Fig. 6, except that the model system does
not include surface tension. Figure 6(g) and 7 show system
states corresponding to the same simulation time and exhibit
weld pool shapes cotresponding to steady states of the flow
field in the weld pool. A comparison of Fig. 6(g) and 7 shows
that the influence of surface tension is small relative to the stir-
ring action of the keyhole. There is a relatively small difference
between the weld pool shapes shown in Fig. 6(g) and 7. This is
consistent with the highly localized character of the energy
source. The onset of any fluid structures due to surface tension,
e.g., Marangoni flow structures, are quickly damped because of
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the relatively rapid onset of solidification in the trailing pool.
Furthermore, this result supports experimental observations
that in deep penetration welding processes keyhole stirring is
the dominant influence on fluid flow in the weld pool. Although
the current model considers an energy source of specific char-
acter, i.e., a continuous-beam energy source with a specific spa-
tial distribution, the dominant influence of keyhole stirring
demonstrated in this case study should represent a general char-
acteristic of the deep penetration welding processes. This fol-
lows because, for deep penetration welding, a large fraction of
the weld pool is always in close proximity to the keyhole and is
therefore influenced primarily by stirring. The dominant influ-
ence of stirring is due to the spatially local character of the
beam source and is not due to any particular temporal behavior
or shape of the keyhole vapor/liquid surface.
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(continued)

As is shown in Fig. 6(a) through (g), after a period of time,
the molten pool achieves a steady-state shape that is insensitive
to the unsteady energy transfer at points in the solid that are
relatively removed from the solid/liquid boundary. This prop-
erty of the system implies that one can extend the same ap-
proach used here for modeling the keyhole vapor/liquid
interface to modeling the liquid/solid interface. As with the
keyhole, however, this approach assumes a time average of lo-
cal changes in shape of the liquid/solid surface. The steady-
state liquid/solid surface can be adopted as a moving surface,
upon which energy is deposited. That is, a boundary whose
temperature is kept constant by continuously adding energy to
the system. In this case, however, energy deposition is due to
the combined system of keyhole and melt pool. As with the
keyhole, this approach eliminates the need for calculating
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structures outside the boundary and thus contributes signifi-
cantly to increased efficiency and problem tractability. For ex-
ample, thermal cycles can be calculated for inhomogeneous
systems or systems containing inclusions that do not interact
with the melt pool. Furthermore, increased accuracy and effi-
ciency can be achieved by first modeling the evolution of the
melt pool to steady state using a mode! system whose bounda-
ries are close to the liquid/solid interface. The calculated weld
pool surface can then be adopted as a moving boundary in a
model system that is only in a solid phase. An explanation of the
mathematical basis for extending the current approach for
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Fig. 7 Steady state of weld pool for model system without sur-
face tension. This system state and that shown in Fig. 6(g) are at
the same simulation time. The temperatures of isotherms are as-
signed as in Fig. 6.

modeling the keyhole boundary to modeling the liquid/surface
boundary follows from an examination of the transition of this
model system to a steady state in both the temperature and fluid
velocity field. This simulation demonstrates the weak coupling
between processes occurring in different parts of the workpiece
during the overall welding process.

6. Unsteady Process and Evolution of
System to Steady State

Figures 8(a) through (f) show the unsteady evolution of the
model system to a steady state for both the temperature and
fluid velocity field. The initial state for this simulation is that
shown in Fig. 6(g). For this simulation, the heat flux out/flow
boundary conditions given by Eq 17b and 18a have been ap-
plied to the system, allowing the system to achieve a steady
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state for the temperature field. A comparison of the system
states (Fig. 6ato 6g and 8a to 8f) shows several general charac-
teristics of these simulations. First, the shape of the weld pool,
after having reached a steady state, is independent of the heat
flux out/flow boundary conditions. Second, the unsteady evo-
lution of the temperature field in the solid, fora large fraction of
the workpiece in the vicinity of the melt pool, is not influenced
by the rear and side boundary conditions. Third, although the
rear boundary conditions do not influence the temperature field
in the vicinity of the melt pool, they do influence the tempera-
ture field in the vicinity of the rear boundary. These general
characteristics follow because both the fluid velocity field in
the melt pool and the temperature field in the vicinity of the
melt pool are influenced by system conditions upstream, i.e.,
these fields have parabolic spatial character (see Ref 9),
whereas temperature values at points in the solid that are not
close to the melt pool are influenced by both upstream and
boundary conditions. These general characteristics of the sys-
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(continued)

tem provide a mathematical basis for uncoupling, for the pur-
pose of calculating thermal cycles, two regimes of the unsteady
welding process. One regime is of heat conduction and fluid
flow in the region of the workpiece associated with the key-
hole, melt pool, and surrounding heated solid. The other regime
is of heat conduction in parts of the workpiece that are in the
solid phase where the influence of upstream conditions in the
system are comparable to that of downstream conditions. This
regime would include a large fraction of the heat-affected zone.

The approach of using a steady-state configuration of the
solid/liquid interface, discussed in Section 6, is an approxima-
tion in that the heat of fusion will introduce local thermal gradi-
ents in the neighborhood of this surface. As a result, isothermal
surfaces that are near the liquid/solid interface are time depend-
ent even if the system has reached a steady state globally. An
examination of this property is given below and is based on an
analysis of the time dependence of local shape changes of the
isotherm labeled “c.” For this model, this isotherm is within a
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temperature range for which there is exothermic energy release
(represented in the current model by large changes in the value
of C, for temperatures near 7 = 1000 K). Therefore, in the pre-
sent simulations, the shape of the isotherm labeled “c” (in con-
trast to other isotherms that are shown) is time dependent even
when the system has reached a steady state.

7. Sample Calculations of Thermal
Cycles for Elements of Prototype
Iron-Steel System

In this section, a sample calculation is described of steady-
state thermal cycles, T(x,y,z,?), for elements of the model sys-
tem. These thermal cycles are shown in Fig. 9(a) through (f).
One purpose of these calculations in the present study is to ex-
amine the numerical aspects of the model for its extension to
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(continued)

the quantitative analysis and prediction of welding structures
that could occur in complex welding processes. Another pur-
pose is to examine the general influence of energy changes as-
sociated with solid-state transformations and their significance
in calculating thermal cycles.

In the present study, to isolate the general features of local
energy changes due to reactions, the authors have not incorpo-
rated into the model system any general transformation effects.
In the present simulations, local energy changes due to melting,
solidification, or any specific exothermic (or endothermic)
solid-state reaction that would occur in a specific alloy has not
been considered. In the present analysis, only a single exother-
mic reaction that occurs at temperatures in the neighborhood of
1000 K and is independent of whether or not the workpiece ele-
ment is cooling or heating has been considered. The spatial and
temporal character of structures due to this prototype reaction
should be reasonably representative of structures associated
with solid-state reactions or phase transformations.
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The thermal cycles shown in Fig. 9 are calculated from the
steady state of the system whose temperature field is shown in
Fig. 8(f) according to the relation

Txyz,H)=T [x,y,z, VL] [37]
B

Several aspects of this calculation merit comment. In the
present calculation, the accuracy of the calculated 7 and U
fields decreases for values progressively closer to the keyhole
as does the accuracy of the T field in the neighborhood of the
isotherms labeled “c.” For the purpose of this initial study, a se-
ries of simulations were performed that combine three regions
of the workpiece, each containing different structures whose
characteristic time and length scales may be dissimilar. In addi-
tion, only the thermal cycles T(x,y,z,¢) were calculated for # less
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than 0.14 s. In a more quantitative analysis, the thermal cycles
can be extended indefinitely in time by adopting the time-de-
pendent boundary values of the temperature field (Eq 17b and
18a) as in-flow boundary conditions on model systems that rep-
resent adjoining parts of the workpiece. For elements of the
workpiece that are relatively far from the beam source and
whose temperatures are in the range of values for which
T(x,y,z,¢) corresponds to cooling, sufficient grid resolution is
required for an accurate calculation of time-dependent struc-
tures due to phase transformations. As discussed above, the in-
herent weak coupling between the regions of the workpiece
that are and are not near the melt pool permit an efficient parti-
tioning of the calculation into separate calculations. Similarly,
there is a weak coupling between regions of the workpiece
where exothermic or endothermic changes in energy do and do
not occur, thus permitting further partitioning of the system and
of the associated calculations. Of course, in principle, in-
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Fig. 9 Steady-state thermal cycles for different elements of model workpiece. These thermal cycles were calculated using the steady state
shown in Fig. 8(f) according to the relation T(x,y,z,1) = T(x,y,z,Vpx). The thermal cycles shown in each of these figures (each corresponding
to a specified xz plane) correspond to different depths within the workpiece and are labeled as follows. The circles denote z = 0.0 m (top sur-
face of workpiece); the triangles denote z = 0.002 m; the plus signs denote z = §.004 m; the x denotes z = 0.006 m; and the squares denote z
= 0.008 m (bottom surface of the workpiece).
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creased accuracy can be obtained for the combined calculation
via embedded meshes at an increase in computational cost. Fi-
nally, Eq 37 is not valid for steady-state structures that are time
dependent. This is discussed below.

It is important to note the significance of the unsteady-state
calculations for the calculation of steady-state structures and
for the calculation of unsteady structures in general. For the
steady-state calculation shown by Fig. 8(f) and 9, it is not nec-
essary to calculate the precursor unsteady system states with a
level of accuracy comparable to that of those system states in
the time neighborhood of the steady state. In the context of a
steady-state calculation, the unsteady precursor states serve
only as initial estimates. The steady-state temperature and fluid
velocity fields depend only on the steady-state shape of the
keyhole vapor/liquid boundary for a given welding speed. It
follows then that, for a steady-state calculation, any model for
the unsteady evolution of the keyhole boundary can be
adopted, even one that is unrealistic, as long as its final configu-
ration is physically accurate. If the unsteady evolution of the
melt pool is important, then a more quantitatively accurate rep-
resentation of the temporal or unsteady character of the keyhole
liquid/vapor interface must be included in the model system. It
is observed experimentally, for example, that the unsteady evo-
lution of the keyhole boundary occurs on a timescale that is
much shorter than that shown in Fig. 6. Thus, the beam parame-
ter values used here, i.e., the values of B, and Oy, for modeling
the unsteady evolution of the keyhole may serve more as a gen-
erator of successively better estimates of the steady-state key-
hole boundary rather than a mode! for keyhole evolution.

An issue whose consideration can be important for calculat-
ing quantitatively accurate thermal cycles and for using nu-
merical model simulation to predict weldment structure
concerns the highly localized variations of the function
T(x,y,2,t) shown in Fig. 9. These highly localized variations of
T(x,y,z,1), which are particularly noticeable in Fig. 9(c), (d), and
(e), are due to energy release at temperatures within a relatively
narrow range. This energy release is modeled via the addition
of a temperature-dependent term to the heat capacity function,
C,. This term is weakly dependent on temperature, i.e., it varies
stightly with temperature, except for approximately a 100-de-
gree interval centered at 1000 K (727 °C), where it rises and
falls sharply with changing temperature. In the present analy-
sis, the general behavior of structures due to this prototype exo-
thermic reaction are considered in that the time and length
scales for the associated energy deposition are typical of solid
phase reactions or energy changes at the fusion boundary.

An analysis of the unsteady evolution and local time de-
pendence of an isothermal surface, e.g., the isotherm labeled
“c,” within the temperature range for which there is an exother-
mic reaction provides a case study examination of the influence
of local energy release. Referring to Fig. 6(a) through 7, and
8(a) through (f), note that all isotherms are smooth, except
those labeled “c,” where temperature is within the range of val-
ues for which there is an exothermic reaction. There are two im-
portant aspects of this highly localized structure that must be
considered to increase the accuracy of the numerical simula-
tion. These two aspects are the mathematical character of this
structure, i.e., the characteristic space and time scales of this
structure and how these scales determine the computational re-
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quirements of its accurate calculation, and the physical charac-
ter of this structure and the nature of its coupling to the overall
welding process.

The characteristic ength and time scales of this structure are
such that a higher level of both temporal and spatial resolution
is required relative to that for calculation of the surrounding
temperature field. However, by comparing the calculated tem-
perature for different times that are close to steady state, e.g.,
Fig. 8(c) through (d), it is evident that the time-dependent struc-
tures occurring in the neighborhood of isotherm c are relatively
local and do not influence the shape of other isotherms. In addi-
tion, for a given isotherm, these structures may be charac-
terized by relatively small deviations from a time-averaged
steady-state temperature. Therefore, thermal cycles calculated
from a given steady-state configuration of the system accord-
ing to Eq 37 should represent a reasonably good approxima-
tion. Local spatial resolution can be increased by local grid
refinement via the embedded mesh method discussed above.

An extension of the present model system for detailed calcu-
lations of thermal cycles for individual elements of a workpiece
can include information about transformations if that informa-
tion is available. The practical implementation and feasibility
of this approach is an open issue for further research.

8. Analysis of Fluid Velocity Field due to
Keyhole Stirring

Fluid velocity fields along various two-dimensional slices
of the model three-dimensional workpiece are shown in Fig.
10. The velocity fields shown in Fig. 10 correspond to the sys-
tem state whose temperature field is shown in Fig. 7 and which
does not include surface tension. The velocity fields shown in
Fig. 10 are in a coordinate frame of reference whose origin is
stationary with respect to the beam. The physical effect to be
noted is the relative increase in the velocity of the liquid near
the keyhole boundary. For this calculation, the average speed
up of the fluid relative to the workpiece is approximately half
the welding speed, or equivalently, an increase in speed that is
on the order of twice the welding speed, V¥, in the reference
frame of the beam. The result is predicted by laminar flow the-
oryl!2}and is consistent with the value of viscosity used in this
calculation, i.e., a low Reynolds number. In a preliminary cal-
culation using this model, beam parameters ot R, =2 x 103 m
and V= 102 ms~! are used. For these parameter values, the re-
sulting weld pool size is sufficiently large such that the keyhole
boundary is separated from the liquid/solid boundary. In this
case, the liquid/solid boundary has less of an impeding influ-
ence on the flow. For this calculation, the maximum speed is
0.0206 m/s relative to the beam and is very close to twice the
welding speed.

The presence of the keyhole represents a geometric con-
straint on the flow of the fluid rather than a driving force. This
constraint causes increases in the velocity of the fluid by factors
close to two and is independent of the nature of the forces driv-
ing flow at points in the liquid that are not in the neighborhood
of the keyhole boundary, e.g., buoyancy or surface tension.
This implies that the presence of the keyhole is always a domi-
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Fig. 10 Fluid velocity field showing the effect of keyhole stirring. The velocity field shown is for the system state shown in Fig. 7.

nant influence on fluid convection and that its shape plays an
important role.

9. Discussion and Conclusion

A numerical model and associated general approach for
simulating the combined system of keyhole, melt pool, and
heated solid in both steady and unsteady deep penetration
welding processes have been presented. The calculations pre-
sented in this study are for the purpose of demonstrating the
generality of this approach and of showing the dominant char-
acteristics of deep penetration welding processes that are sig-
nificant for accurate modeling. Although the beam energy
source used in this initial study is that of a continuous beam, the
results presented here should be representative of welding
processes associated with laser and electron beams with differ-
ent temporal behavior. In addition, an overview of the impor-
tant features of the numerical methods used in the model has
been presented, with discussion of how these features contrib-
ute to its flexibility for simulating different types of welding
processes. Extensions of the model according to these features
have been suggested.

An extension of the model system for a more detailed analy-
sis of deep penetration welding of metals should include a more
detailed representation of the liquid metal properties. Experi-
mental and theoretical studiesl!3:14] indicate that, over the
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range of temperatures between T, and T, the viscosity and
density of liquid metals varies significantly. For example, the
density of liquid iron varies by 15% for T in (T4T;). There-
fore, assuming a constant viscosity and density may not be an
accurate approximation for characterizing fluid flow around
the keyhole. A better understanding of the include of the key-
hole requires extending the current model to include effects as-
sociated with compressibility and changes in viscosity as a
function of temperature.

The deposition of energy on the time-dependent boundary
according to a power distribution law is phenomenological in
that it is a representation which implicitly assumes the nature of
the coupling between energy deposition on the surface of the
keyhole and processes occurring inside the keyhole. A more
quantitative study should take an accurate account of this cou-
pling. The approach used in the model, i.e., time-dependent
boundaries, however, does suggest a tractable approach toward
consideration of this coupling. Experimental observation
shows that the keyhole surface is typically unsteady and that a
detailed consideration of processes inside the keyhole may re-
quire a substantial computation cost in addition to the typically
high level of computation associated with the numerical mod-
eling of processes involving three-dimensional fluid flow and
heat conduction. Experimental observations also suggest, how-
ever, that a quantitative description of the temporal behavior of
the keyhole can be determined and that this information can be
included in a model via time-dependent boundary conditions
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and thus represented on a time scale characteristic of unsteady
flow structures that can occur in a weldment.

The important physical and numerical features of the model
system discussed in this paper are reviewed, and the issues re-
lated to its extension to more detailed and quantitative analysis
of welding structures are discussed. These features include the
following. The stirring action of the keyhole represents the
overwhelmingly dominant influence on fluid flow in deep
penetration welding. The local character of the beam source in
deep penetration welding is such that other influences on ftuid
flow, e.g., surface tension, are small relative to stirring because
of the relatively rapid onset of solidification.

The steady state of the weld pool is weighted primarily by
the upstream conditions of the system and therefore achieves a
steady state rapidly relative to the time for achieving a steady
state of the total welding process. The deep penetration welding
process consists of multiple regimes, both in the fluid and solid,
whose characteristic time scale are dissimilar. The formalism
of the SIMPLE algorithm (although moderately optimal for
modeling structures in particular regimes) is highly adaptable
to modeling the combined system.

The different regimes comprising the total welding process
tend to be weakly coupled, thus permitting a partitioning of the
system for the purpose of calculating structure.

The welding process can consist of time-dependent struc-
tures, even in the steady state, and therefore (in cases where
such information is available and can be put into the model,
e.g., Eq 7) a detailed calculation of thermal cycles must track
individual elements in time. The welding process consists of
many spatially fine structures that are embedded into coarser
structures. The SIMPLE algorithm is easily combined with the
method of embedded meshes for local grid refinement. Given
an accurate thermal cycle T(x,y,z,f) for elements of a work-
piece, weldment characteristics can be predicted.

Acknowledgment

The authors would like to thank the ONR for sponsorship of
earlier stages of this research and DARPA for its sponsorship of
an effort for extending this research. In addition, the authors
would like to thank R. Dixon, G. Lewis, and J. Milewski of the
Metallurgy Group at the Los Alamos National Laboratory for
their discussions about deep penetration welding and for their
continued collaboration in this modeling effort. Furthermore,

836—Volume 2(6) December 1993

the authors would like to thank R. Guirguis of the Naval Sur-
face Warfare Center at White Qak, Maryland, for his discus-
sions about computational fluid dynamics. One of the authors
(A. Monis) would like to thank the SEAP program of the Naval
Research Laboratory for their support in this effort over the
past 2 years. And finally, another of the authors (S.G.L.) would
like to thank L. Phillips for his discussions about transport phe-
nomena.

References

1. S. Kou, Welding Metallurgy, John Wiley & Sons, 1987, p 9
2. Y.H. Wang and S. Kou, Modelling and Control of Casting and
Welding Processing, Proc. 3rd Conf. Modelling of Casting and
Welding Processes, S. Kou and R. Mehrabian, Ed., The Metallur-
gical Society, 1986, p 197
3. LF. Lancaster, The Physics of Welding, Pergamon Press, 1986, p
146-221
4. R. Dixon, G. Lewis, and J. Milewski, L.os Alamos National Labo-
ratory, private communication, 1992
5. E.A. Metzbower, Laser Beam Welding: Thermal Profiles and
HAZ Hardness, Weld. J., Vol 69 (No. 7), 1990, p 272
6. E.A. Metzbower, Experimental Laser Weld Thermal Cycles, J.
Laser Appl., Vol 1 (No. 3), 1987,p9
7. M.C. Tsai and S. Kou, Power Beam Processing (Electron, Laser,
Plasma-Arc), Proc. Int. Power Beam Conf., E.A. Metzbower and
D. Hauser, Ed., ASM International, 1988, p 131
8. J.M. Glass, H.P. Groger, R.J. Churchill, and E.M. Norin, Laser
Cutting of Amorphous Alloy Ribbon, J. Mater. Eng., Vol 12 (No.
1), 1990, p 59
9. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemi-
sphere Publishing, 1980, p 126-130
10. D.F. Watt, L. Coon, M. Bibby, J. Goldak, and C. Henwood, An Al-
gorithm for Modelling Microstructural Development in Weld
Heat-Affected Zones, Acta Metall., Vol 36 (No. 11), 1988, p 3029
11. C.M. Albone and G. Joyce, Proceedings of the Eleventh Interna-
tional Conference on Numerical Methods in Fluid Dynamics,
Springer-Verlag, 1989, p 106
12. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenom-
ena, John Wiley & Sons, 1960, p 136-137
13. Z. Morita and T. lida, Viscosity of Molten Iron and Steel, Proc.
1st Sino-Japanese Symp. Iron and Steel, Chinese Society of Met-
als, 1981, p 103-127
14. T.lida and R.I.L. Guthrie, The Physical Properties of Liquid Met-
als, Oxford University Press, 1988, p 70

Journal of Materials Engineering and Performance



