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A Numerical Model for Deep 
Penetration Welding Processes 

S.G. Lambrakos, E.A. Metzbower, P.G. Moore, J.H. Dunn, and A. Monis 

The general features of a numerical model, and of its extensions, for calculating the temperature and 
fluid velocity field in a three-dimensional workpiece undergoing deep penetration laser beam welding are 
described. In the current model, the deposition of power from the beam is represented by time-dependent 
boundary conditions on the equations of energy and momentum transfer. These boundary conditions are 
specified at each timestep on a surface whose configuration can change with time and upon which energy 
is deposited according to a specified power distribution. This model also includes the effects of the buoy- 
ancy force on the melt pool and of the surface tension gradient on the surface of the fluid. The coupled 
equations of energy, momentum transfer, and continuity combined with the time-dependent boundary 
conditions representing the keyhole and the moving boundaries of  the workpiece are solved by using a 
specific implementation of the SIMPLE algorithm. The important features of  the numerical methods 
used in the model are discussed. Isotherms and convection patterns calculated using the current model 
are presented, and their significance for predicting weldment properties is discussed. A significant result 
of the simulations is that they demonstrate the overwhelming influence of the keyhole vapor/liquid inter- 
face on fluid convection and conduction in deep penetration welding. 
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1. Introduction 

THE nature of  fluid convection in a weld pool can have a sig- 
nificant effect on the properties o f  the associated weld. It is the 
combined influence of  fluid convection and heat transfer for a 
given welding process that determines the temperature history 
of  the workpiece and thus the microstructure of  its various seg- 
ments. In the case of  arc welding processes, there have been 
significant contributions to the modeling of  fluid convection 
and heat transfer in the workpiece.[ 1-31 Calculations using these 
models have contributed to a quantitative understanding of  the 
relative influences o f  the electromagnetic force, surface ten- 
sion, and buoyancy force on fluid convection in the weld pool. 

Deep penetration laser welding differs from other conven- 
tional welding processes in that energy deposition does not oc- 
cur on the surface of  the workpiece or over some contiguous 
spatial distribution within the workpiece. Instead, for deep 
penetration welding, energy deposition occurs on the surface 
boundary of  a keyhole that moves, on average, through the 
workpiece at a constant speed, i.e., the welding speed. In gen- 
eral, the region inside the keyhole is made of  turbulent and os- 
cillatory fluid structures that exist in a gas phase. Although the 
boundary of  the keyhole fluctuates in time, and may peri- 
odically collapse,[4] for a given beam intensity and speed, it can 
be characterized on average by a fixed surface configuration 
extending into the melt pool. Because the three-dimensional 
distribution of  temperature in the neighborhood of  the keyhole 
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is correlated with the time-averaged steady-state shape of  the 
liquid/vapor interface defining the keyhole, an approximate 
representation of  the keyhole is obtained using a distributed 
heat source extending into the workpiece. Notable among dis- 
tributions used for representing the distribution of  heat in the 
workpiece is the modified Beer-Lambert's law.[ 5-7] The func- 
tion representing the distribution of  heat in the workpiece can 
be adopted as the source term in the heat conduction equation. 
This approach has been used effectively for modeling heat con- 
duction in the workpiece for steady-state conditions. [5-81 

It is observed experimentally that the presence of  a moving 
keyhole has a major influence on the fluid flow in the weld pool 
in the neighborhood of  the keyhole boundary. It is conjectured 
that this influence is due to the mechanical action o f  the va- 
por/liquid interface moving through the molten pool. The spa- 
tial distribution of  energy deposited on the surface of  the 
keyhole (i.e., the vapor/liquid interface defining the keyhole 
boundary) is a complicated function of  time, the instantaneous 
configuration of  the keyhole, the gas phase processes occurring 
inside the keyhole, and the spatial and temporal characteristics 
of  the laser beam. On average with respect to time, however, a 
Gaussian power distribution should be a reasonable approxi- 
mation o f  the energy deposition on the surface of  the keyhole 
relative to the center of  the beam. 

A numerical model is described for deep penetration laser 
welding that explicitly considers the influence of  the keyhole 
liquid/vapor interface on convection. The influence o f  the key- 
hole is represented in the model by time-dependent boundary 
conditions on the equations of  energy and momentum transfer. 
These boundary conditions are specified at each timestep on a 
dynamically evolving liquid/vapor interface whose configura- 
tion is a function of  the energy deposited on it and the material 
properties of  the workpiece. In the model, the rate and spatial 
distribution of  energy deposition on the surface o f  the keyhole 
boundary is specified according to a Gaussian power law distri- 
bution. The motion of  the workpiece with respect to the beam is 
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represented by time-dependent boundary conditions on the en- 
ergy transport equations. As the workpiece moves past the 
beam, the forward face is always at the ambient temperature, 
T A. Thus, a thermal cycle can be calculated for any point (x, y, 
and z) in the workpiece, i.e., T(x, y, z, t), where t L < t < t U, and 
t L and tudefine the beginning and end of the cycle. Discretiza- 
tion of  the equations defining this model system is via a specific 
implementation o f  the SIMPLE (semi-implicit method for 
pressure-linked equations) algorithm.[ 91 The SIMPLE algo- 
rithm for the numerical solution of  the coupled transport equa- 
tions has been used successfully for modeling energy transfer 
and fluid flow in welding processes. This method was chosen 
because its formalism provides flexibility for introducing ex- 
tensions consistent with a specific process to be simulated. The 
general formalism of  the SIMPLE algorithm is in terms of  
physical quantities that are defined with respect to cubical vol- 
ume elements. Because this mathematical framework is not a 
priori structured for use with any particular method of  solving 
the discretization equations, one may use methods based on the 
physical aspects o f  the problem to optimize the algorithm for a 
specific computer architecture. This formulation has signifi- 
cance in terms of  convenience and flexibility for extending this 
model for the calculation of  welding structures associated with 
inclusions or asymmetric unsteady structures. In the model, a 
formulation of  the SIMPLE algorithm was constructed accord- 
ing to the specific aspects of  simulating deep penetration weld- 
ing processes. The formulation o f  the SIMPLE algorithm does 
not give explicit consideration to any particular numerical pro- 
cedure for calculating derivatives. This formulation is moti- 
vated by the increased availability of  computer memory, which 
permits the use o f  more convenient forms of  discretization 
equations, i.e., forms that previously may have been consid- 
ered inefficient. 

Included in this article is a discussion of the significance o f  
the influence of  the keyhole on thermal cycles associated with 
deep penetration welding processes and of  potential extensions 
of  the model for the analysis of  different types of  welding struc- 
tures. A significant result of  the simulations is that they demon- 
strate the overwhelming influence of  the stirring action due to 
the keyhole vapor/liquid interface on fluid convection in the 
weld pool. The nature of  this influence is discussed relative to 
other driving forces of  convection in the weld pool. Also in- 
cluded in this article is a case study for predicting an estimate o f  
thermal cycles for positions within a workpiece for welding of  
iron or low-carbon steels. 
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Fig. 1 Schematic of model system showing relative coordi- 
nates of system boundaries. 

The system is assumed to be symmetric about the xz face at 
y = 0 (see Fig. 1); thus, only one half of  the system is modeled. 
The equations governing the model system are 

3/" 
pc (T)~ + v .  [pG(r)uq 

P ot 

O( C .( T) T) 
+ PS~JvB ~,~xj = v .  [k(r )v  r(x,t)] [1] 
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[2] 

and 

2. Physical Model of Deep Penetration 
Laser Welding Process 

2.1 Coupled Transport Equations and Forcing Terms 

The model system to be specified is that of unsteady energy 
and momentum transport in a coordinate system that is fixed in 
the reference frame of  a moving laser beam energy source. A 
schematic of  the model system is shown in Fig. 1. The bounda- 
ries of  the model system are defined, at each timestep, by the 
sides of  a finite-sized rectangular workpiece and by the tem- 
perature of  vaporization isotherm, which defines the boundary 
of the keyhole. 

V. U = 0 [3] 

wherej  = 1,2, 3 denotes the Cartesian coordinates x, y, and z, 
respectively. The remaining quantities are defined as follows. 
The quantity U = (UI,U2U3) = (u,v,w) is the velocity field at a 
given point, and x = (xl,x2,x3) = (x,y,z) is the Cartesian coordi- 
nate of  that point. The quantity V B is the speed of  the beam, 
moving in the direction of  increasing x, and 81j is the Kronecker 
delta function. The quantity P is the pressure at a given point, 
and T is the temperature. The quantities Bj are the body force 
terms due to the buoyancy force and are given by: 

B = -pl3g(T- TM) [4] 
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where TMiS the melting temperature of  the metal. The quantity 
It(T) is the coefficient of  viscosity as a function of  temperature 
and is approximated by the expression: 

It(T) = ~ts[] - u s ( T -  TM) ] + ~ [5] 

where It s is some very large number representing an infinite 
viscosity in a solid and us(T- TM) is a unit step function such 
that: 

us(T- TM)= 0 if T< TM,1 otherwise [6] 

For the sample calculations shown in this article, physical 
quantities approximating those of  iron or steel are adopted for 
the model system. Therefore, this model is not representative of 
a specific system, but rather of  a general prototype iron-steel 
system. These quantities and others that are associated with nu- 
merical discretization and model specification are given below 
and in Appendix C. The heat capacity in J/kg - K is given by the 
expression:[10] 

I 1.117 x 106(1010 - T) -2 + 12 622(1010 - T) -1 

Cp(T)=] +0.3485T+355.6 i f T < 1 0 0 0 K  [7] 

[1.225 • 108(T - 990) -4 + 0.1381 T+ 585.7 otherwise 

This function has been adopted for Cp(T) because of  its 
qualitative behavior. In the present study, no quantitative sig- 
nificance is given to the values o f  Cp(T) for the range of  tem- 
perature in the neighborhood o f  T = 1000 K (727 ~ where it 
changes considerably with T. The function given by Eq 7 pro- 
vides a representation ofexothermic energy release for the pur- 
pose of  examining the general influence of  reactions that can 
occur in the workpiece during welding. The conductivity in 
W/m �9 K as a function of  temperature in degrees Kelvin is given 
by the following expression: 

I 
70.4138-0.038125T if  T< 1073.15 
41.0 if  1073.15 < T< 1763.15 

k(T)= -862.5375+0.5125T i f 1 7 6 3 . 1 5 < T <  1803.15 [8] 
/61.5 if 1803.15 < T< 2800.15 
[865.34829 - 0.28707T if2800.15 < T< 3014.15 

In Eq 1 and 2, the influence o f  convection is represented by 
two terms, i.e., aterm containing U and one containing V B. This 
representation follows because the flow field associated with 
the convection terms in both the energy and momentum trans- 
port equations, i.e., Eq 1 and 2, is defined with respect to an ori- 
gin that is fixed in the workpiece. The component of  the flow 
field parallel to the direction of  the motion of  the beam is there- 
fore p(u + liB); however, the dependent variables of  the mo- 
mentum transfer equations (u,v,w) are the velocities relative to 
an origin that is stationary with respect to the beam. The 
weighting coefficients for the discretization of  Eq 2, as defined 
by the SIMPLE algorithm,191 are modified to take this repre- 
sentation into account. 

2.2 Effects Entering the Model Through the Boundary 
Conditions 

The effect of  surface tension enters the model via the bound- 
ary conditions on the momentum transport equations. This is 
described in the next section. The deposition o f  power from the 
beam enters the model via time-dependent boundary condi- 
tions on the energy transfer equatio n (Eq 1). At each timestep, 
an isothermal region of  the workpiece at the temperature of  va- 
porization is specified according to the relation: 

T B = min[TG,Ql (z)Q2(x,y,t)] [9l 

where 

QI(z) = Qo exp (-13bz) [10] 

[ l l ]  

and T G is the temperature o f  vaporization. The quantity of  Q2 is 
a distribution that specifies the deposition o f  power on the sur- 
face of  the keyhole relative to the beam center. The function Q1 
specifies the layer depth for energy deposition on the surface. 
All node points with T -  T G are defined as the union o f  interior 
and boundary points of  the keyhole. 

At the keyhole liquid/vapor interface, the boundary condi- 
tions on the momentum transfer equations are those o f  a no-slip 
boundary. That is, the component of  the velocity, in the refer- 
ence frame of  the workpiece, normal to the interface is zero: 

A A 

U . n + V  B- n = 0  [12] 

A .  
where n Is the unit normal to the keyhole liquid/vapor interface 
and V a is the velocity of  the beam with respect to the workpiece 
and is in the x-direction. Another boundary on the molten re- 
gion is defined by the solid/liquid interface. The boundary con- 
dition on this boundary is specified in tile model  according to 
the equation: 

Uj=-51jV B if T< T M [131 

Note that according to this specification the set of  all nodes 
having temperature values less than TMincludes both boundary 
and exterior points of  the melt pool. 

3. Boundary Conditions on the Faces of 
the Sample 

In this section, the boundary conditions on each face of  the 
sample (see Fig. 1) are specified with respect to temperature 
and velocity. Boundary conditions on the xy face at z = 0 are 
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0T 
- 0  [14a] 

3z 

3u Oy 3T 3ov ~y ;iT 
ktOz- 0T 3x and P"0z bT 3y ifTM<T<_T G [14b] 

u = - V  8 and v = 0 otherwise [14c] 

and 

w : 0  [14d] 

The quantity i)y/i)T is the thermal coefficient of surface ten- 
sion. Boundary conditions on the xy face at z = L z are 

0T 
- 0 [15a] 

0z 

0u 07 0T 0v 2y 0T 
I't~'z = 0T 0x and ~t~z= OT Oy ifTM< T< T G [15b] 

u = - V  B and v= 0 otherwise [15c] 

and 

w = 0 [1Sd] 

Boundary conditions on the xz face aty = 0 are 

OT 
- 0 [16a] 

0y 

Ou Ow 
- - = 0  v = 0  and - - = 0  [16b] 
Oy ay 

Boundary conditions on the xz face aty = Ly and at time t + 
At are 

0T 
- 0  [17a] @ 

ifLy coincides with the physical edge of the workpiece, or 

T(t + At) : T(t) + ( kA~t l ~_T [17b] 

ifLv does not coincide with the physical edge of the workpiece. 

u = - V  B v = 0  and w = 0  [17c] 

Boundary conditions on theyz face atx = 0 and at time t + At 
are 

( kAt ~ d2T 
T ( t + A t ) = T ( t ) + [ - - [  2 [18a] 

( p f p ; d x  

where x = 0 does not coincide with the physical edge of the 
workpiece. 

u = - V  8 v = 0  and w = 0  [18b] 

Boundary conditions on theyz face atx = L x are 

T : T  A [ 19a] 

u = - V  B v = 0  and w = 0  [19b] 

It is important to note that the boundary conditions on the 
system boundaries at face xz at y = Ly, face yz at x = 0, and face 
yz at x = L x are physically consistent only if solidification has 
occurred in the neighborhood of these boundaries; that is, only 
if the temperature at grid points in the neighborhood of these 
boundaries is less than TMSO that u = - V  B. Additionally, the rate 
of energy transfer and the positioning of the beam in the model 
system should not be such that the boundary conditions given 
by Eq 19a and 19b are invalid. That is, the system parameters 
should always be such that the values of the temperature in the 
neighborhood oftheyz face atx = L x are T A. 

4. Computational Issues 

4.1 Formulation o f  the S I M P L E  Algorithm for 
Modeling Welding Processes 

A derivation of the discretization equations that define the 
SIMPLE algorithm are given else~vhere. [~l The current model 
uses a tbrmulation of this algorithm that is structured for the 
type of modeling considered here. Thus, the ~brmulation is 
structured to provide an accurate coupling between energy 
transfer and the stirring action of the keyhole boundary. Fur- 
thermore, this formulation provides an explicit representation 
of this coupling and of the dependence of energy transfer on 
keyhole stirring. This formulation is defined by: 

~Op = ~ ak% + + 
At 

[201 

where 

= ak+ At ] 
[21] 
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Fig. 2 indexing scheme for node neighbors and associated dy- 
namical quantities. 

The weighting coefficients a k are given by 

a k = F k AIA ( Pe ( k ) )  + max [(-1)kpA/2 

(vk + (~k + ~2k)vs), 0] [2; 

where 

Pc(k) = p[Vk+ (sty+ 82k)Vs]Al F~ ~ 

X 

[23] 
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Fig. 3 Procedure for shifting grid relative to beam center for 
the case AI > VBAt. 

and 

A(IPe(k)l) = max[0,(1.0 - 0. I rPe(k)r) 51 [24] 

The integer variable k specifies with which of  the six nearest 
neighbor nodes of  node p a given quantity is to be associated. 
This is described schematically in Fig. 2. In Eq 20 to 24, if the 
field quantity cp is the temperature T, then F = k(T) and Sp = O. 
If the field quantity ~p is u, v, or w, then F=~t(T)  and 
Sp = (~P/Oxj)AI 3 + B .  The quantity Cpp ~ is the value of  (pp at the 
previous timestep. The weighting coefficients a k follow by de- 
riving the discretization equations of  SIMPLE from the model 
system defined by Eq 1 and 2 with the condition o f  fixed or uni- 
form separation between grid points. The significance of  this 
condition in the current formulation is discussed below. The 
quantity V k is given by: 

V k = ~ l k U l  + ~2k122 + ~3kV3 + ~4kV4 + ~5kW5 + ~6kW6 [25] 

and is the component of  the velocity orthogonal to the faces of  
a rectangular volume centered at nodep  (see Fig. 2). 

The significant features of  the above formulation of  the 
SIMPLE algorithm for modeling the coupling of  energy trans- 
fer in the weld pool to keyhole stirring are embodied in the 
weighting coefficients defined by Eq 22 and 23. The weighting 
factor A, whose value is between 0 and 1, is a function of  the Pe- 
clet number Pc(k) and varies according to the influence of  con- 
vective energy transfer relative to energy transfer by 
conduction. The coefficients a k are constructed so that there is 
an accurate weighting of  the influence due to stirring. The stir- 
ring action of  the keyhole, unlike other mechanisms for driving 
fluid flow, is the result o f  coupling between the motion of  the 
molten pool and the geometric constraint imposed by the key- 
hole boundary. 

The rate of  energy input into the system is a function of  the 
beam profile parameters defined in Eq 10 and 11 and the beam 
speed V B. The energy input is effected via the time-dependent 
boundary conditions associated with the keyhole vapor/liquid 
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Procedure for shifting grid relative to beam center for 

interface. The time-dependence o f  the keyhole boundary con- 
ditions results from the shifting o f  the grid relative to the beam 
center. The procedure for shifting the grid depends on the size 
of the distance between nodes AI relative to the quantity VBAt, 
where At isthe timestep of  integration. These procedures are il- 
lustrated in Fig. 3 and 4. 

4.2 Convergence Criteria f o r  lterative Schemes 

The system of  discretization equations is solved iteratively 
until the convergence criterion 

max ~:gk < Emax [261 

is satisfied. The quantity Ema x is the maximum error tolerance 
and 

n - -  n n - 1  ~ j k  1 
E i j k -  ( P i j k -  (Pijk [27] 

In Eq 26 and 27, the subscript denotes the grid point and the su- 
perscripts the iteration. Successive iterations consist o f  under- 
relaxation according to 

t o n - -  t a n - I  + ~ / At 
[28] 

where the superscript n* denotes the most current iterate, 
which can be either n or n - 1, and the relaxation coefficient cr 
is less than 1. In the case of  fluid velocity, the authors have de- 
fined a relative error scaled by the beam velocity, i.e., 

- 1  

/ (pn. _q)n:l q)n eg.k = yk ~yk uk if tp = u 

[ (P~jk-(Pnvl~sk ( q)n'Vk + VB)-l otherwise 

[29] 

Once convergence is achieved for a particular region of  the 
workpiece, i.e., Eq 26 is satisfied for a sufficiently large and 
connected set of nodes and for a sufficiently long time interval, 
the values of  the dependent variables at the node points within 
this region, r need no longer be changed, and the iteration on 
these variables stops. Thus, the work per iteration decreases as 
the iteration progresses. This follows because the weighting co- 
efficients a k are computed from the converged values of  the 
previous set of  iterations. 

4.3 Evaluation o f  No-Slip Boundary  Conditions 

The solution of  the no-slip boundary condition is of the 
form: 

A 

Uok = P(n)(Ulm n + V a) [301 

A .  
where n is the unit normal to the keyhole liquid/vapor surface at 
the node /j'k, which is a boundary point. The quantity Ulm n 
is the velocity at a node lmn exterior and nearest to the bound- 

A . A . �9 �9 
ary and along n (see Fig. 5), and P(n) Is the projection operator 
that forms a vector orthogonal to ~. The nodes {lmn} are the set 
of  all exterior points that are most adjacent to the boundary. For 
U/jk to be computed, the node/jk must be identified as a bound- 
ary point, the node lmn must be identified, and n must be com- 
puted. 

To identify a given node as a boundary point, the tem- 
perature at each node and its six adjacent nodes is examined. 
The node O'k is identified via a search algorithm that takes ad- 
vantage o f  the shape of  the keyhole. Because the radius of  the 
keyhole cannot exceed the radius of  the laser beam (R b in Eq 
11), the number of  comparisons required to identify all bound- 
ary points is bounded above by 7n2eamn z where nbeam corre- 
sponds to the number of  nodes that the beam surface has 
enclosed in the z-direction (see Fig. 5). 

Once the nodes O'k and lmn are determined, the normal is 
given by 

n = Xlm n - x i j  k [31 ] 
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6 
�9 , B 

Pp : I/6Z Pk + 6Al 
k = l  

[35] 

where 

3 o~,.o 

i=I 

[36] 

and the method for numerically calculating the .derivatives, 
~U~i,p/~xi, is arbitrary and not a formal part of  the derivation of  
Eq J5 (see Appendix A). 

Fig. 5 Schematic of model system showing nodes used for cal- 
culating no-slip boundary conditions. 

�9 , , .x 

and the projecnon operator P(n) is given by 

,,, i i n  T 

P(n) = I- nTnr [321 

This form of the operator eliminates the need to compute the 
Euclidian norm ofn  and therefore eliminates a computationally 
costly square root calculation. 

4.4 Calculation o f  Pressure Field 

An expression for iteratively calculating a correction to the 
pressure is presented such that the resulting field is consistent 
with both the momentum transport and continuity equations. 
This expression represents a further modification of  the SIM- 
PLE algorithm and is based on a second-order central differ- 
ence of  the pressure field�9 In addition, this expression is not 
defined in terms of  shifted-grid quantities. 

At each iteration, it is desired to calculate a discrete pressure 
field Pp such that Up, i, where p designates the node point, satis- 
fies Eq 1, as well as the expression: 

3 
~U~ 

Z 2s -~  = 0 
3x i 

i = l  

[33] 

It can be shown that, if ~ satisfies Eq ,20 for the pressure field 
* r ' * " e;, then for a p essure field : P; + t'/, where P/is the pres- 

sure correction, the corrected velocity field is given by 

Ui,p: U~i,p+ ;~ Oxi ]Al [34] 

The expression for the pressure correction that is derived in Ap- 
pendix A is given by 

4.5 Discussion o f  Computational lssues 

The present study concerns two issues. One is the charac- 
terization of  the general influence on energy transfer due to the 
physical conditions in the neighborhood of  the keyhole va- 
por/liquid interface. The other is the development of  a proto- 
type model system of  deep penetration welding that is easily 
extendable to more detailed and quantitative analysis and that 
eventually can be realized as a practical tool for process model- 
ing of  different types o f  deep penetration welding processes. 
The authors have therefore adopted a discrete formulation of  
the model system, based on SIMPLE, that emphasizes its con- 
venience and adaptability. In this section, the important fea- 
tures of  that formulation are described that should be relevant 
in practice to achieving a reasonable combination o f  accuracy, 
efficiency, and model flexibility. A rigorous evaluation of  the 
formulation in terms of  overall optimality has not been consid- 
ered and remains an open issue for further investigation. How- 
ever, experience gained using this model and a preliminary 
examination of  its underlying mathematical properties suggest 
that the formulation is both a convenient and reasonably tracta- 
ble approach for process modeling involving complex or un- 
steady keyhole structures. 

The important features of  the formulation are reviewed and 
contrasted to the original formulation of  SIMPLE. A discretiza- 
tion scheme has been adopted that is based on a uniform or 
fixed grid separation, i.e., AI in Eq 20 through 23. The discreti- 
zation scheme of  Patankar and co-workers[ 9] is based on a grid 
whose separation of  nodes is locally variable and is therefore in 
general nonuniform. This aspect of  the original formulation is 
important for local grid refinement where higher levels of  reso- 
lution are required. Another feature that was adopted in the 
formulation is that of  a single grid system. The original formu- 
lation used a combination of  grids, i.e., a main grid and a shifted 
grid. This feature o f  the original formulation contributes to both 
its efficiency and accuracy because it permits the calculation of  
gradients of  the different quantities, i.e., T, Uj, and P, to be at 
the same level of  accuracy and computational cost. The reasons 
for not adopting this feature are discussed below. Because this 
formulation is based on a single grid, it is necessary to adopt a 
consistent pressure correction equation. Therefore, the authors 
derived a pressure correction equation that was based on a sin- 
gle grid system. This derivation does not include as part o f  its 
formal development any specific finite difference approxima- 
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tion of  the velocity gradients (see Eq 36). However, it does in- 
clude a physically reasonable condition on the character of  the 
local variation of  the pressure field at the boundaries, i.e., Eq 
A6 in Appendix A. It is important to note that the use of  a single, 
uniformly spaced grid requires in general a higher computa- 
tional cost for calculating the quantities OP/3xj and ~U~j,p~Xj 
relative to the computational cost of  achieving comparable ac- 
curacy with a shifted grid system. The reason for adopting a 
formulation of  SIMPLE that is based on a single, uniformly 
spaced grid is that the mathematical properties o f  this algorithm 
permit it to be combined with the method of  embedded 
meshes[]l] for adaptive local grid refinement. In general, be- 
cause SIMPLE is an implicit formulation, grid spacing is inde- 
pendent of  the timestep size and can be varied locally to 
achieve a desired resolution. Thus, the method of embedded 
meshes combined with SIMPLE is mathematically equivalent 

to the original formulation of  SIMPLE, which is based on a lo- 
cally variable global grid. However, the embedded mesh 
method is found to be highly flexible for locally adapting grid 
resolution according to the details of  flow structures that can 
occur in deep penetration welding problems. Reference 11 dis- 
cusses the general features of  the embedded mesh method. 

5. Case Study of Factors Influencing the 
Shape of the Weld Pool 

For the prototype iron-steel system considered here, a case 
study o f  the sensitivity of  the shape of  the molten pool with re- 
spect to several general physical aspects of  deep penetration 
welding processes is presented. The sensitivity of  the shape of 
the melt pool with respect to keyhole stirring, surface-tension 
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(continued) 

driven flow, and the rate of  energy transfer in the solid were 
considered. An analysis of  the relative influence o f  surface ten- 
sion is important in that surface tension has been shown to be a 
significant driving force for fluid flow in welding processes 
where energy deposition occurs on the surface of  the work- 
piece. An analysis of the relative influence o f  energy transfer in 
the solid is important because it provides a basis for increasing 
both the accuracy and efficiency of  process simulations. This is 
explained below. 

Figures 6(a) through (g) show the unsteady evolution of  the 
model system to a steady state of  the three-dimensional weld 
pool. The isotherm labeled " f '  in these figures designates ap- 
proximately the solid/liquid boundary. This simulation uses a 
model system that includes buoyancy and surface tension. In 
addition, for this simulation the authors have imposed the con- 
dition o f  zero conductivity at the boundaries for the purpose of  

maintaining unsteady energy transfer in the solid. That is, the 
boundary conditions are such that the system continuously 
heats up at the boundaries and cannot achieve a global steady 
state for conduction in the solid. Figure 7 shows a state of  the 
model system that is calculated via a simulation that is the same 
as that described by Fig. 6, except that the model system does 
not include surface tension. Figure 6(g) and 7 show system 
states corresponding to the same simulation time and exhibit 
weld pool shapes corresponding to steady states of  the flow 
field in the weld pool. A comparison of  Fig. 6(g) and 7 shows 
that the influence of  surface tension is small relative to the stir- 
ring action of  the keyhole. There is a relatively small difference 
between the weld pool shapes shown in Fig. 6(g) and 7. This is 
consistent with the highly localized character of  the energy 
source. The onset of  any fluid structures due to surface tension, 
e.g., Marangoni flow structures, are quickly damped because of  
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the relatively rapid onset of  solidifcation in the trailing pool. 
Furthermore, this result supports experimental observations 
that in deep penetration welding processes keyhole stirring is 
the dominant influence on fluid flow in the weld pool. Although 
the current model considers an energy source of  specific char- 
acter, i.e., a continuous-beam energy source with a specific spa- 
tial distribution, the dominant influence of  keyhole stirring 
demonstrated in this case study should represent a general char- 
acteristic of  the deep penetration welding processes. This fol- 
lows because, for deep penetration welding, a large fraction o f  
the weld pool is always in close proximity to the keyhole and is 
therefore influenced primarily by stirring. The dominant influ- 
ence of stirring is due to the spatially local character of  the 
beam source and is not due to any particular temporal behavior 
or shape of  the keyhole vapor/liquid surface. 

As is shown in Fig. 6(a) through (g), after a period of  time, 
the molten pool achieves a steady-state shape that is insensitive 
to the unsteady energy transfer at points in the solid that are 
relatively removed from the solid/liquid boundary. This prop- 
erty of  the system implies that one can extend the same ap- 
proach used here for modeling the keyhole vapor/liquid 
interface to modeling the liquid/solid interface. As with the 
keyhole, however, this approach assumes a time average of  lo- 
cal changes in shape of  the liquid/solid surface. The steady- 
state liquid/solid surface can be adopted as a moving surface, 
upon which energy is deposited. That is, a boundary whose 
temperature is kept constant by continuously adding energy to 
the system. In this case, however, energy deposition is due to 
the combined system of  keyhole and melt pool. As with the 
keyhole, this approach eliminates the need for calculating 
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structures outside the boundary and thus contributes signifi- 
cantly to increased efficiency and problem tractability. For ex- 
ample, thermal cycles can be calculated for inhomogeneous 
systems or systems containing inclusions that do not interact 
with the melt pool. Furthermore, increased accuracy and effi- 
ciency can be achieved by first modeling the evolution of the 
melt pool to steady state using a model system whose bounda- 
ries are close to the liquid/solid interface. The calculated weld 
pool surface can then be adopted as a moving boundary in a 
model system that is only in a solid phase. An explanation of the 
mathematical basis for extending the current approach for 
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Fig. 7 Steady state of weld pool for model system without sur- 
face tension. This system state and that shown in Fig. 6(g) are at 
the same simulation time. The temperatures of isotherms are as- 
signed as in Fig. 6. 

modeling the keyhole boundary to modeling the liquid/surface 
boundary follows from an examination of the transition of this 
model system to a steady state in both the temperature and fluid 
velocity field. This simulation demonstrates the weak coupling 
between processes occurring in different parts of the workpiece 
during the overall welding process. 

6. Unsteady Process and Evolution of 
System to Steady State 

Figures 8(a) through (f) show the unsteady evolution of the 
model system to a steady state for both the temperature and 
fluid velocity field. The initial state for this simulation is that 
shown in Fig. 6(g). For this simulation, the heat flux out/flow 
boundary conditions given by Eq 17b and 18a have been ap- 
plied to the system, allowing the system to achieve a steady 
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state for the temperature field. A comparison of  the system 
states (Fig. 6a to 6g and 8a to 8t") shows several general charac- 
teristics of  these simulations. First, the shape of  the weld pool, 
after having reached a steady state, is independent of  the heat 
flux out/flow boundary conditions. Second, the unsteady evo- 
lution of  the temperature field in the solid, fora large fraction of  
the workpiece in the vicinity of  the melt pool, is not influenced 
by the rear and side boundary conditions. Third, although the 
rear boundary conditions do not influence the temperature field 
in the vicinity of  the melt pool, they do influence the tempera- 
ture field in the vicinity of  the rear boundary. These general 
characteristics follow because both the fluid velocity field in 
the melt pool and the temperature field in the vicinity of  the 
melt pool are influenced by system conditions upstream, i.e., 
these fields have parabolic spatial character (see Ref 9), 
whereas temperature values at points in the solid that are not 
close to the melt pool are influenced by both upstream and 
boundary conditions. These general characteristics of  the sys- 

tern provide a mathematical basis for uncoupling, for the pur- 
pose of  calculating thermal cycles, two regimes of  the unsteady 
welding process. One regime is of  heat conduction and fluid 
flow in the region of  the workpiece associated with the key- 
hole, melt pool, and surrounding heated solid. The other regime 
is of  heat conduction in parts of  the workpiece that are in the 
solid phase where the influence of  upstream conditions in the 
system are comparable to that of  downstream conditions. This 
regime would include a large fraction of  the heat-affected zone. 

The approach of  using a steady-state configuration of  the 
solid/liquid interface, discussed in Section 6, is an approxima- 
tion in that the heat of fusion will introduce local thermal gradi- 
ents in the neighborhood of  this surface. As a result, isothermal 
surfaces that are near the liquid/solid interface are time depend- 
ent even if the system has reached a steady state globally. An 
examination of this property is given below and is based on an 
analysis of  the time dependence of  local shape changes of the 
isotherm labeled "c." For this model, this isotherm is within a 
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assigned as in Fig. 6. (continued) 

temperature range for which there is exothermic energy release 
(represented in the current model by large changes in the value 
of  Cp for temperatures near T = 1000 K). Therefore, in the pre- 
sent simulations, the shape of  the isotherm labeled "c" (in con- 
trast to other isotherms that are shown) is time dependent even 
when the system has reached a steady state. 

7. Sample Calculations of Thermal 
Cycles for Elements of Prototype 
Iron-Steel System 

In this section, a sample calculation is described of  steady- 
state thermal cycles, T(x,y,z,t), for elements of  the model sys- 
tem. These thermal cycles are shown in Fig. 9(a) through (f). 
One purpose of these calculations in the present study is to ex- 
amine the numerical aspects of  the model for its extension to 

the quantitative analysis and prediction of  welding structures 
that could occur in complex welding processes. Another pur- 
pose is to examine the general influence of  energy changes as- 
sociated with solid-state transformations and their significance 
in calculating thermal cycles. 

In the present study, to isolate the general features of  local 
energy changes due to reactions, the authors have not incorpo- 
rated into the model system any general transformation effects. 
In the present simulations, local energy changes due to melting, 
solidification, or any specific exothermic (or endothermic) 
solid-state reaction that would occur in a specific alloy has not 
been considered. In the present analysis, only a single exother- 
mic reaction that occurs at temperatures in the neighborhood of  
1000 K and is independent of  whether or not the workpiece ele- 
ment is cooling or heating has been considered. The spatial and 
temporal character of  structures due to this prototype reaction 
should be reasonably representative of  structures associated 
with solid-state reactions or phase transformations. 
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The thermal cycles shown in Fig. 9 are calculated from the 
steady state of  the system whose temperature field is shown in 
Fig. 8(f) according to the relation 

T x [37] 

Several aspects of  this calculation merit comment. In the 
present calculation, the accuracy o f  the calculated T and Uj 
fields decreases for values progressively closer to the keyhole 
as does the accuracy of  the T field in the neighborhood of  the 
isotherms labeled "c." For the purpose of  this initial study, a se- 
ries of  simulations were performed that combine three regions 
of  the workpiece, each containing different structures whose 
characteristic time and length scales may be dissimilar. In addi- 
tion, only the thermal cycles T(x,y,z,t) were calculated for t less 

than 0.14 s. In a more quantitative analysis, the thermal cycles 
can be extended indefinitely in time by adopting the time-de- 
pendent boundary values of  the temperature field (Eq 17b and 
18a) as in-flow boundary conditions on model systems that rep- 
resent adjoining parts of  the workpiece. For elements of  the 
workpiece that are relatively far from the beam source and 
whose temperatures are in the range of  values for which 
T(x,y,z,t) corresponds to cooling, sufficient grid resolution is 
required for an accurate calculation of  time-dependent struc- 
tures due to phase transformations. As discussed above, the in- 
herent weak coupling between the regions o f  the workpiece 
that are and are not near the melt pool permit an efficient parti- 
tioning o f  the calculation into separate calculations. Similarly, 
there is a weak coupling between regions o f  the workpiece 
where exothermic or endothermic changes in energy do and do 
not occur, thus permitting further partitioning of  the system and 
of  the associated calculations. Of  course, in principle, in- 
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creased accuracy can be obtained for the combined calculation 
via embedded meshes at an increase in computational cost. Fi- 
nally, Eq 37 is not valid for steady-state structures that are time 
dependent. This is discussed below. 

It is important to note the significance of the unsteady-state 
calculations for the calculation of  steady-state structures and 
for the calculation of  unsteady structures in general. For the 
steady-state calculation shown by Fig. 8(I) and 9, it is not nec- 
essary to calculate the precursor unsteady system states with a 
level of  accuracy comparable to that of  those system states in 
the time neighborhood of  the steady state. In the context o f  a 
steady-state calculation, the unsteady precursor states serve 
only as initial estimates. The steady-state temperature and fluid 
velocity fields depend only on the steady-state shape of  the 
keyhole vapor/liquid boundary for a given welding speed. It 
follows then that, for a steady-state calculation, any model for 
the unsteady evolution of  the keyhole boundary can be 
adopted, even one that is unrealistic, as long as its final configu- 
ration is physically accurate. I f  the unsteady evolution of  the 
melt pool is important, then a more quantitatively accurate rep- 
resentation of  the temporal or unsteady character of  the keyhole 
liquid/vapor interface must be included in the model system. It 
is observed experimentally, for example, that the unsteady evo- 
lution of  the keyhole boundary occurs on a timescale that is 
much shorter than that shown in Fig. 6. Thus, the beam parame- 
ter values used here, i.e., the values of[3 b and Q0, for modeling 
the unsteady evolution of  the keyhole may serve more as a gen- 
erator of  successively better estimates of the steady-state key- 
hole boundary rather than a model for keyhole evolution. 

An issue whose consideration can be important for calculat- 
ing quantitatively accurate thermal cycles and for using nu- 
merical model simulation to predict weldment structure 
concerns the highly localized variations o f  the function 
T(x,y,z,t) shown in Fig. 9. These highly localized variations o f  
T(x,y,z,t), which are particularly noticeable in Fig. 9(c), (d), and 
(e), are due to energy release at temperatures within a relatively 
narrow range. This energy release is modeled via the addition 
of  a temperature-dependent term to the heat capacity function, 
Cp. This term is weakly dependent on temperature, i.e., it varies 
slightly with temperature, except for approximately a 100-de- 
gree interval centered at 1000 K (727 ~ where it rises and 
falls sharply with changing temperature. In the present analy- 
sis, the general behavior of  structures due to this prototype exo- 
thermic reaction are considered in that the time and length 
scales for the associated energy deposition are typical of  solid 
phase reactions or energy changes at the fusion boundary. 

An analysis o f  the unsteady evolution and local time de- 
pendence of  an isothermal surface, e.g., the isotherm labeled 
"c," within the temperature range for which there is an exother- 
mic reaction provides a case study examination of  the influence 
of  local energy release. Referring to Fig. 6(a) through 7, and 
8(a) through (f), note that all isotherms are smooth, except 
those labeled "c," where temperature is within the range of  val- 
ues for which there is an exothermic reaction. There are two im- 
portant aspects of  this highly localized structure that must be 
considered to increase the accuracy of  the numerical simula- 
tion. These two aspects are the mathematical character o f  this 
structure, i.e., the characteristic space and time scales of  this 
structure and how these scales determine the computational re- 

quirements of its accurate calculation, and the physical charac- 
ter of  this structure and the nature of  its coupling to the overall 
welding process. 

The characteristic length and time scales of  this structure are 
such that a higher level of  both temporal and spatial resolution 
is required relative to that for calculation of  the surrounding 
temperature field. However, by comparing the calculated tem- 
perature for different times that are close to steady state, e.g., 
Fig. 8(c) through (d), it is evident that the time-dependent struc- 
tures occurring in the neighborhood of  isotherm c are relatively 
local and do not influence the shape of  other isotherms. In addi- 
tion, for a given isotherm, these structures may be charac- 
terized by relatively small deviations from a time-averaged 
steady-state temperature. Therefore, thermal cycles calculated 
from a given steady-state configuration of  the system accord- 
ing to Eq 37 should represent a reasonably good approxima- 
tion. Local spatial resolution can be increased by local grid 
refinement via the embedded mesh method discussed above. 

An extension of  the present model system for detailed calcu- 
lations o f  thermal cycles for individual elements ofa  workpiece 
can include information about transformations if that informa- 
tion is available. The practical implementation and feasibility 
of  this approach is an open issue for further research. 

8. Analysis of Fluid Velocity Field due to 
Keyhole Stirring 

Fluid velocity fields along various two-dimensional slices 
of  the model three-dimensional workpiece are shown in Fig. 
10. The velocity fields shown in Fig. 10 correspond to the sys- 
tem state whose temperature field is shown in Fig. 7 and which 
does not include surface tension. The velocity fields shown in 
Fig. 10 are in a coordinate frame of  reference whose origin is 
stationary with respect to the beam. The physical effect to be 
noted is the relative increase in the velocity of  the liquid near 
the keyhole boundary. For this calculation, the average speed 
up of  the fluid relative to the workpiece is approximately half 
the welding speed, or equivalently, an increase in speed that is 
on the order of twice the welding speed, VB, in the reference 
frame of  the beam. The result is predicted by laminar flow the- 
oryU21 and is consistent with the value of  viscosity used in this 
calculation, i.e., a low Reynolds number. In a preliminary cal- 
culation using this model, beam parameters ofR b = 2 • 10 -3 m 
and V B = 10 -2 ms I are used. For these parameter values, the re- 
suiting weld pool size is sufficiently large such that the keyhole 
boundary is separated from the liquid/solid boundary. In this 
case, the liquid/solid boundary has less of  an impeding influ- 
ence on the flow. For this calculation, the maximum speed is 
0.0206 m/s relative to the beam and is very close to twice the 
welding speed. 

The presence of  the keyhole represents a geometric con- 
straint on the flow of  the fluid rather than a driving force. This 
constraint causes increases in the velocity of  the fluid by factors 
close to two and is independent of  the nature of  the tbrces driv- 
ing flow at points in the liquid that are not in the neighborhood 
of  the keyhole boundary, e.g., buoyancy or surface tension. 
This implies that the presence of  the keyhole is always a domi- 
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Fig. 10 Fluid velocity field showing the effect of keyhole stirring. The velocity field shown is for the system state shown in Fig. 7. 

nant influence on fluid convection and that its shape plays an 
important role. 

9. Discussion and Conclusion 

A numerical model and associated general approach for 
simulating the combined system of  keyhole, melt pool, and 
heated solid in both steady and unsteady deep penetration 
welding processes have been presented. The calculations pre- 
sented in this study are for the purpose of  demonstrating the 
generality of  this approach and of  showing the dominant char- 
acteristics of  deep penetration welding processes that are sig- 
nificant for accurate modeling. Although the beam energy 
source used in this initial study is that of  a continuous beam, the 
results presented here should be representative of  welding 
processes associated with laser and electron beams with differ- 
ent temporal behavior. In addition, an overview of  the impor- 
tant features of the numerical methods used in the model has 
been presented, with discussion of  how these features contrib- 
ute to its flexibility for simulating different types of  welding 
processes. Extensions of  the model according to these features 
have been suggested. 

An extension of  the model system for a more detailed analy- 
sis o f  deep penetration welding of  metals should include a more 
detailed representation of  the liquid metal properties. Experi- 
mental and theoretical studies[]3,141 indicate that, over the 

range of  temperatures between T M and T G, the viscosity and 
density o f  liquid metals varies significantly. For example, the 
density o f  liquid iron varies by 15% for T in (TM~TG). There- 
fore, assuming a constant viscosity and density may not be an 
accurate approximation for characterizing fluid flow around 
the keyhole. A better understanding of  the include of  the key- 
hole requires extending the current model to include effects as- 
sociated with compressibility and changes in viscosity as a 
function of  temperature. 

The deposition of  energy on the time-dependent boundary 
according to a power distribution law is phenomenological in 
that it is a representation which implicitly assumes the nature of  
the coupling between energy deposition on the surface of  the 
keyhole and processes occurring inside the keyhole. A more 
quantitative study should take an accurate account of  this cou- 
pling. The approach used in the model, i.e., time-dependent 
boundaries, however, does suggest a tractable approach toward 
consideration of  this coupling. Experimental observation 
shows that the keyhole surface is typically unsteady and that a 
detailed consideration of  processes inside the keyhole may re- 
quire a substantial computation cost in addition to the typically 
high level of  computation associated with the numerical mod- 
eling of  processes involving three-dimensional fluid flow and 
heat conduction. Experimental observations also suggest, how- 
ever, that a quantitative description of  the temporal behavior of  
the keyhole can be determined and that this information can be 
included in a model via time-dependent boundary conditions 
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and thus represented on a time scale characteristic of  unsteady 
flow structures that can occur in a weldment. 

The important physical and numerical features o f  the model 
system discussed in this paper are reviewed, and the issues re- 
lated to its extension to more detailed and quantitative analysis 
of  welding structures are discussed. These features include the 
following. The stirring action of  the keyhole represents the 
overwhelmingly dominant influence on fluid flow in deep 
penetration welding. The local character of the beam source in 
deep penetration welding is such that other influences on fluid 
flow, e.g., surface tension, are small relative to stirring because 
of  the relatively rapid onset of  solidification. 

The steady state o f  the weld pool is weighted primarily by 
the upstream conditions of  the system and therefore achieves a 
steady state rapidly relative to the time for achieving a steady 
state of  the total welding process. The deep penetration welding 
process consists of  multiple regimes, both in the fluid and solid, 
whose characteristic time scale are dissimilar. The formalism 
of  the SIMPLE algorithm (although moderately optimal for 
modeling structures in particular regimes) is highly adaptable 
to modeling the combined system. 

The different regimes comprising the total welding process 
tend to be weakly coupled, thus permitting a partitioning of  the 
system for the purpose of  calculating structure. 

The welding process can consist of  time-dependent struc- 
tures, even in the steady state, and therefore (in cases where 
such information is available and can be put into the model, 
e.g., Eq 7) a detailed calculation o f  thermal cycles must track 
individual elements in time. The welding process consists of  
many spatially fine structures that are embedded into coarser 
structures. The SIMPLE algorithm is easily combined with the 
method of  embedded meshes for local grid refinement. Given 
an accurate thermal cycle T(x,y,z,t) for elements of  a work- 
piece, weldment characteristics can be predicted. 
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